SPP-C Bluetooth module is designed for intelligent wireless data transmission and create follow V2.1 + EDR Bluetooth specification.

The module supports UART interface, and supports Bluetooth SPP serial protocol, low cost, small size, low power consumption, send and receive sensitivity advantages, with only a few external components will be able to achieve its powerful features.

Features:

Bluetooth V2.1 + EDR Bluetooth Class 2 Built-in PCB antenna RF Support UART interface 3.3V power supply

Application:

This module is mainly used for wireless transmission of data in the field a short distance. And PC can be easily connected Bluetooth device, it can also exchange data between the two modules. Avoid cumbersome cable connections, can directly replace the serial cable.

Bluetooth wireless data transmission;

Remote control and monitoring;

POS systems, wireless keyboard, mouse;

Transportation, underground location, alarm;

Automated data acquisition system;

Wireless data transmission; the banking system;

Wireless data collection;

Building automation, security, wireless monitoring and control room equipment, access control systems;

Smart home, industrial control;

Automotive testing equipment;

Interactive television program voting equipment;

Government energy saving lamps equipment;

Wireless LED display systems;

Bluetooth joystick, Bluetooth gamepad;

Bluetooth Printer

Bluetooth remote control toys

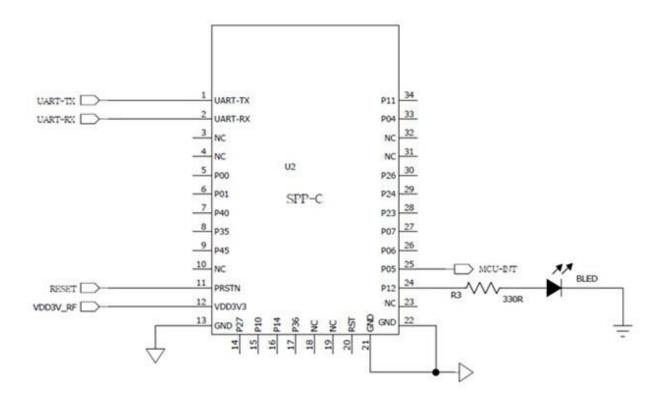
Automotive diagnostic OBDII

Physical characteristics:

Operating Frequency Band &	2.4GHz -2.48GHz unlicensed ISM band ₽
Bluetooth Specification &	V2.1+EDR ₽
Output Power Class ₽	Class 2 +
Operating Voltage &	3.3V ₽
Host Interface ₽	UART ₽

Electrical characteristics:

Absolute Maximum Ratings 4			
Rating &	Min 🕫	Max ₽	
Storage temperature &	-40℃ ₽	+150℃ ↔	
Supply voltage: VBAT &	-0.4V ₽	5.6V ₽	
Other terminal voltages &	VSS-0.4V ₽	VDD+0.4V ₽	

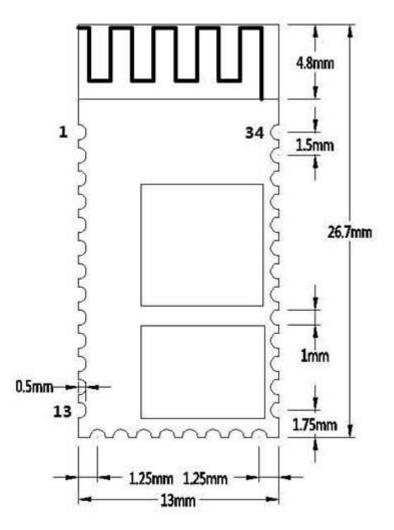

4

Recommended Operating Conditions			
Operating Condition &	Min ₽	Max ↔	
Operating temperature range	-40℃ ↔	+150℃ ₽	
Guaranteed RF performance range(a) €	-40℃ ↔	+150℃ ₽	
Supply voltage: VBAT	2.2V &	4.2V ^(b) ↔	

Power:

Operation Mode &	Connection Type	UART Rate(kbps)	Average₽	Unit +
Page scan ₽	- 4	115.2 ₽	0.42₽	mA ₽
ACL No traffic ₽	Master ₽	115.2 ₽	4.60₽	mA ₽
ACL With file transfer	Master ₽	115.2 ₽	10.3₽	mA ₽
ACL 1.28s sniff ₽	Master ₽	38.4 ₽	0.37₽	mA ₽
ACL 1.28s sniff ₽	Slave ₽	38.4 ₽	0.42₽	mA ₽
SCO HV3 30ms sniff ₽	Master ₽	38.4 ₽	19.8₽	mA +
SCO HV3 30ms sniff 🕫	Slave ₽	38.4 ₽	19.0₽	mA ₽
Standby Host connection	- 43	38.4 ₽	40₽	μ A <i>Φ</i>

Application Circuit:



Pin Description:

Pin Number	Name₽	Туре₽	Functional Description
1.0	UART-TX ₽	CMOS output	Serial data output⊄
2₽	UART-RX +	CMOS input₀	Serial data input⊖
3₽	NC ₽	Two-way	NC (Please vacant) φ
4₽	NC &	Two-way₽	NC (Please vacant)φ
5↔	P00 +	Two-way₽	Programmable input / output ports₽
6₽	P01 +	Two-way.	Programmable input / output ports
7₽	P40 ₽	Two-way.	Programmable input / output ports
843	P35 ₽	Two-way₽	Programmable input / output ports₽
9₽	P45₽	Two-way	Programmable input / output ports
10₽	NC ₽	Two-way	NC (Please vacant) φ
11₽	RESETB +	CMOS input	Reset / restart button (low reset)↔
12₽	3.3V ₽	Power input₽	+3.3V power supply
13₽	GND ₽	Ground₽	Ground₽
14₽	P27₽	Two-way₽	Programmable input / output ports₽
15₽	P10₽	Two-way₽	Programmable input / output ports₽
16₽	P14 ₽	Two-way₽	Programmable input / output ports₽

17₽	P36 ₽	Two-way.	Programmable input / output ports₽	
18₽	NC 43	Two-way₽	NC (Please vacant)₽	
19₽	NC +	Two-way₽	NC (Please vacant)	
20₽	NC +	Two-way₽	NC (Please vacant) φ	
21₽	GND ₽	Ground₽	Ground₽	
220	GND ₽	Ground₽	Ground₽	
23₽	NC &	Two-way₽	NC (Please vacant)	
240	P12¢	Export@	Status indication LED port (see other settings)	
25₽	P05 &	Exporte	Host interrupt instruction port (see other settings) φ	
26₽	P06 ↔	Two-way₽	Programmable input / output ports₽	
27₽	P07₽	Two-way₽	Programmable input / output ports₽	
28₽	P23 ₽	Two-way₽	Programmable input / output portse	
29₽	P24	Two-way₽	Programmable input / output ports₽	
30₽	P26 ₽	Two-way₽	Programmable input / output ports₽	
31₽	NC &	Two-way₽	NC (Please vacant)₽	
32₽	NC	Two-way₽	NC (Please vacant)₽	
33₽	P04 +	Two-way₽	Programmable input / output portse	
34₽	P11₽	Two-way₽	Programmable input / output ports₽	

Dimensions:

Other configurations

Status Indicator LED: P12

Bluetooth module which is used to indicate status, LED light flashes and a Bluetooth module corresponding to the state as follows:

Mode₽	LED Display₽	Module Status∂
Slave mode≠	Uniform Slow flashing (800ms-on, 800ms-off)	Pairing wait∻
moder	Long bright₽	Establish a connection

LAYOUT Notes

- 1 SPP-C serial port Bluetooth module level required to 3.3V, and 5V level if connected to the system need to increase the level switch chip.
- 2 Bluetooth signals by the surrounding great influence, such as trees, metal, walls and other obstacles will have a Bluetooth signal absorption or shielding, it is recommended not to install metal being.
- 3 Since the metal will weaken the antenna function, it is recommended to Lay board module, the module antenna shop and do not go below the line, the best knockout.

SPP-C Bluetooth serial communication module AT command set

Users can be through the serial port and SPP-C chip communication, serial port Tx, Rx two signal lines, baud rate support 1200,2400,4800,9600,14400,19200,38400,57600,115200,230400,460800 and 921600bps. The default serial port baud rate of 9600bps.

Instruction Set Description

SPP-C Bluetooth serial module instruction Command instruction set.

(Note: You must carriage return when the AT command, AT commands can only take effect in the module is not connected, the Bluetooth module once the device is connected, the Bluetooth module enters data transparent mode $\ r \ n$ to press the computer. Enter key, if not press the Enter key to add $\ r \ n$.AT command case insensitive)

1 Test command:

Downlink instruction₽	Response₽	Parameters₽
AΤφ	OK₽	No₽

2 Module reset (restart):

Downlink instruction₽	Response₽	Parameters.
AT+RESET₽	OK₽	No÷

3 Get software version number -

Downlink instruction	Response	Parameters€
AT+VERSION₽	+VERSION= <param/> √	Param: software version
	OK.	number₽

For example: AT+VERSION\r\n +VERSION=2.0-20100601 OK

4 . Restore Default Status:

Downlink instruction	Response₽	Parameters _€
AT+DEFAULT₽	OK₽	无₽

5 . Set / Query - Bluetooth address code:

Response₽	Parameters <i>₽</i>
OK.ø	Param: address code↔
+ LADDR =< <u>Param</u> >↓	The default address code:
OK₽	"AA: BB: CC: 11: 22: 33"&
	OK. + LADDR =< <u>Param</u> > •

Example: Send AT + LADDR11: 22: 33: 44: 55: 66 \ r \ n

Returns + LADDR = 11: 22: 33: 44: 55: 66

Then the Bluetooth address code read 11:22: 33: 44: 55: 66, the module default address code is AA: BB:

CC: 11: 22: 33.

6 . Set / query the device name:

Downlink instruction	Response₽	Parameters₽
AT+NAME <param/>	OK₽	
3	1, + NAME = < <u>Param</u> >ψ	Param: Bluetooth device name-
AT+NAME¢	OK success₊	Default name: "SPP-CA"₽
	2, FAIL failure₽	

Example: Send AT + NAMEBOLUTEK \ r \ n

Returns + NAME = BOLUTEK

Then the Bluetooth name changed BOLUTEK

Parameter support power-down save.

7. Query-Module role:

Downlink instruction₽	Response₽	Parameters _e
AT+ROLE <param/> +	OK₽	Param: Parameter values are as
AT+ ROLΕφ	+ ROLE= <param/> + OK+	follows: 0 from the role (Slave) 1 primary role (Master) Default: 0

8 . Set / Query - Pairing code:

Downlink instruction₽	Response	Parameters <i>₽</i>
AT+PIN< <u>Param</u> >₽	OK₽	Param: pairing code₽
AT+ PIN↔	+ PIN =< Param>+	Default name: "1234"↔

Example: Send AT + PIN8888 \ r \ n

Returns + PIN = 8888

Then the Bluetooth pairing password to 8888, the module default passcode is 1234.

9 . Set / Query - baudrate:

Downlink instruction₽	Response₽	Parameters <i>₽</i>
AT+BAUD< <u>Param</u> >₽	OK₽	< <u>Param</u> >: Baud Rate«
AT+BAUD₽	+BAUD= <param/> +	11200₽
	OK₊	22400↔
	φ	34800↔
		49600↔
		519200₽
		638400₽
		757600₽
		8115200↔
		9230400↔
		A460800↔
		B921600₽
		C1382400₽
		Default: 4 9600€

Example: Send: AT + BAUD6

Returns: + BAUD = 6 At this baud rate to 38400

Note: After baud rate change, if not the default of 9600, when after the parameter settings or data

communication, use baud rate settings.