
The Arduino Uno Clone is an easy to use, open source controller. Simply connect to a pc and begin using.

The Arduino Uno Clone is a microcontroller board based on the ATmega328. It has 14 digital input/output
pins (of which 6 can be used as PWM outputs), 6 analog inputs, a 16 MHz ceramic resonator, a USB
connection, a power jack, an ICSP header, and a reset button. It contains everything needed to support the
microcontroller; simply connect it to a computer with a USB cable or power it with a AC-to-DC adapter or
battery to get started.

Main Changes from the older version:
- Add two rows of the holes for the pins. So it can be connected with normal Dubond line.
- Add 3 rows of holes for wiring.
- Change the in-line package of ATMEGA328P to flat package.

UNO R3 [Atmega 328P-AU+CH340G]

CH340G Driver Download link:

Driver download:

USB CH341/CH340 WINDOWS98/ME/2000/XP/Server 2003/VISTA/, Server 2008/Win7/Win8
32/64 http://www.5v.ru/zip/ch341ser.zip

USB CH341/CH340 LINUX http://www.5v.ru/zip/ch341ser_linux.zip

USB CH341/CH340 MAC OS32,MAC OS64 http://www.5v.ru/zip/ch341ser_mac.zip

CH340 driver download here: http://www.wch.cn/downloads.php?name=pro&proid=65

http://arduino.cc/en/Main/Boards
http://www.atmel.com/dyn/resources/prod_documents/doc8161.pdf

EAGLE files: arduino-duemilanove-uno-design.zip Schematic: arduino-uno-schematic.pdf

Microcontroller ATmega328P-AU
Operating Voltage 5V
Input Voltage (recommended) 7-12V
Input Voltage (limits) 6-20V
Digital I/O Pins 14 (of which 6 provide PWM output)
Analog Input Pins 6
DC Current per I/O Pin 40 mA
DC Current for 3.3V Pin 50 mA

Flash Memory 32 KB of which 0.5 KB used by
bootloader

SRAM 2 KB
EEPROM 1 KB
Clock Speed 16 MHz

The Uno can be powered via the USB connection or with an external power supply. The power source
is selected automatically.

External (non-USB) power can come either from an AC-to-DC adapter (wall-wart) or battery. The adapter
can be connected by plugging a 2.1mm center-positive plug into the board's power jack. Leads from a
battery can be inserted in the Gnd and Vin pin headers of the POWER connector.

The board can operate on an external supply of 6 to 20 volts. If supplied with less than 7V, however, the 5V
pin may supply less than five volts and the board may be unstable. If using more than 12V, the voltage
regulator may overheat and damage the board. The recommended range is 7 to 12 volts.

The power pins are as follows:

• VIN. The input voltage to the Arduino board when it's using an external power source (as opposed to
5 volts from the USB connection or other regulated power source). You can supply voltage through
this pin, or, if supplying voltage via the power jack, access it through this pin.

• 5V. The regulated power supply used to power the microcontroller and other components on the
board. This can come either from VIN via an on-board regulator, or be supplied by USB or another
regulated 5V supply.

• 3V3. A 3.3 volt supply generated by the on-board regulator. Maximum current draw is 50 mA.
• GND. Ground pins.

The Atmega328 has 32 KB of flash memory for storing code (of which 0,5 KB is used for the bootloader); It
has also 2 KB of SRAM and 1 KB of EEPROM (which can be read and written with the EEPROM library).

Each of the 14 digital pins on the Uno can be used as an input or output, using pinMode(), digitalWrite(), and
digitalRead() functions. They operate at 5 volts. Each pin can provide or receive a maximum of 40 mA and
has an internal pull-up resistor (disconnected by default) of 20-50 kOhms. In addition, some pins have
specialized functions:

• Serial: 0 (RX) and 1 (TX). Used to receive (RX) and transmit (TX) TTL serial data. TThese pins are
connected to the corresponding pins of the ATmega8U2 USB-to-TTL Serial chip .

• External Interrupts: 2 and 3. These pins can be configured to trigger an interrupt on a low value, a
rising or falling edge, or a change in value. See the attachInterrupt() function for details.

• PWM: 3, 5, 6, 9, 10, and 11. Provide 8-bit PWM output with the analogWrite() function.
• SPI: 10 (SS), 11 (MOSI), 12 (MISO), 13 (SCK). These pins support SPI communication, which,

although provided by the underlying hardware, is not currently included in the Arduino language.

• LED: 13. There is a built-in LED connected to digital pin 13. When the pin is HIGH value, the LED is
on, when the pin is LOW, it's off.

http://arduino.cc/en/Reference/AnalogWrite
http://arduino.cc/en/Reference/AttachInterrupt
http://arduino.cc/en/Reference/DigitalRead
http://arduino.cc/en/Reference/DigitalWrite
http://arduino.cc/en/Reference/PinMode
http://www.arduino.cc/en/Reference/EEPROM

The Uno has 6 analog inputs, each of which provide 10 bits of resolution (i.e. 1024 different values). By
default they measure from ground to 5 volts, though is it possible to change the upper end of their range
using the AREF pin and the analogReference() function. Additionally, some pins have specialized
functionality:

• I2C: 4 (SDA) and 5 (SCL). Support I2C (TWI) communication using the Wire library.

There are a couple of other pins on the board:

• AREF. Reference voltage for the analog inputs. Used with analogReference().
• Reset. Bring this line LOW to reset the microcontroller. Typically used to add a reset button to

shields which block the one on the board.

See also the mapping between Arduino pins and Atmega328 ports.

The Arduino software includes a serial monitor which allows simple textual data to be sent to and from the
Arduino board. The RX and TX LEDs on the board will flash when data is being transmitted via the USB-to-
serial chip and USB connection to the computer (but not for serial communication on pins 0 and 1).

A SoftwareSerial library allows for serial communication on any of the Uno's digital pins.

The ATmega328 also support I2C (TWI) and SPI communication. The Arduino software includes a Wire
library to simplify use of the I2C bus; see the documentation for details. To use the SPI communication,
please see the ATmega328 datasheet.

The Arduino Uno can be programmed with the Arduino software (download). Select "Arduino Uno w/
ATmega328" from the Tools > Board menu (according to the microcontroller on your board). For details,
see the reference and tutorials.

The ATmega328 on the Arduino Uno comes preburned with a bootloader that allows you to upload new code
to it without the use of an external hardware programmer. It communicates using the original STK500
protocol (reference, C header files).

You can also bypass the bootloader and program the microcontroller through the ICSP (In-Circuit Serial
Programming) header; see these instructions for details.

http://dfu-programmer.sourceforge.net/
http://www.atmel.com/dyn/products/tools_card.asp?tool_id=3886
http://dev.arduino.cc/wiki/uno/Hacking/Programmer
http://www.atmel.com/dyn/resources/prod_documents/avr061.zip
http://www.atmel.com/dyn/resources/prod_documents/doc2525.pdf
http://arduino.cc/en/Tutorial/Bootloader
http://arduino.cc/en/Tutorial/HomePage
http://arduino.cc/en/Reference/HomePage
http://arduino.cc/en/Main/Software
http://arduino.cc/en/Reference/Wire
http://www.arduino.cc/en/Reference/SoftwareSerial
http://arduino.cc/en/Hacking/PinMapping168
http://arduino.cc/en/Reference/AnalogReference
http://arduino.cc/en/Reference/Wire
http://arduino.cc/en/Reference/AnalogReference

Rather than requiring a physical press of the reset button before an upload, the Arduino Uno is designed in a
way that allows it to be reset by software running on a connected computer. One of the hardware flow control
lines (DTR) of the ATmega8U2 is connected to the reset line of the ATmega328 via a 100 nanofarad
capacitor. When this line is asserted (taken low), the reset line drops long enough to reset the chip. The
Arduino software uses this capability to allow you to upload code by simply pressing the upload button in the
Arduino environment. This means that the bootloader can have a shorter timeout, as the lowering of DTR
can be well-coordinated with the start of the upload.

This setup has other implications. When the Uno is connected to either a computer running Mac OS X or
Linux, it resets each time a connection is made to it from software (via USB). For the following half-second or
so, the bootloader is running on the Uno. While it is programmed to ignore malformed data (i.e. anything
besides an upload of new code), it will intercept the first few bytes of data sent to the board after a
connection is opened. If a sketch running on the board receives one-time configuration or other data when it
first starts, make sure that the software with which it communicates waits a second after opening the
connection and before sending this data.

The Uno contains a trace that can be cut to disable the auto-reset. The pads on either side of the trace can
be soldered together to re-enable it. It's labeled "RESET-EN". You may also be able to disable the auto-reset
by connecting a 110 ohm resistor from 5V to the reset line; see this forum thread for details.

The Arduino Uno has a resettable polyfuse that protects your computer's USB ports from shorts and
overcurrent. Although most computers provide their own internal protection, the fuse provides an extra layer
of protection. If more than 500 mA is applied to the USB port, the fuse will automatically break the connection
until the short or overload is removed.

The maximum length and width of the Uno PCB are 2.7 and 2.1 inches respectively, with the USB connector
and power jack extending beyond the former dimension. Three screw holes allow the board to be attached to
a surface or case. Note that the distance between digital pins 7 and 8 is 160 mil (0.16"), not an even multiple
of the 100 mil spacing of the other pins.

http://www.arduino.cc/cgi-bin/yabb2/YaBB.pl?num=1213719666/all

Arduino can sense the environment by receiving input from a variety of sensors and can affect its
surroundings by controlling lights, motors, and other actuators. The microcontroller on the board is
programmed using the Arduino programming language (based on Wiring) and the Arduino
development environment (based on Processing). Arduino projects can be stand-alone or they can
communicate with software on running on a computer (e.g. Flash, Processing, MaxMSP).

Arduino is a cross-platoform program. You’ll have to follow different instructions for your personal
OS. Check on the Arduino site for the latest instructions. http://arduino.cc/en/Guide/HomePage

Once you have downloaded/unzipped the arduino IDE, you can Plug the Arduino to your PC via USB cable.

Now you’re actually ready to “burn” your
first program on the arduino board. To
select “blink led”, the physical translation
of the well known programming “hello
world”, select

File>Sketchbook>
Arduino-0017>Examples>
Digital>Blink

Once you have your skecth you’ll
see something very close to the
screenshot on the right.

In Tools>Board select

Now you have to go to
Tools>SerialPort
and select the right serial port, the
one arduino is attached to.

http://arduino.cc/en/Guide/HomePage
http://www.processing.org/
http://wiring.org.co/
http://arduino.cc/en/Reference/HomePage

